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Abstract

Work Package 1 in the ADVENT project was concerned with selecting components and interfaces
from real-world systems software that would motivate our development of architecture-driven
verification methods. To achieve this goal, we have surveyed a number of real-world pieces of
systems software and selected the ones that yield the most promising case studies, as per the
criteria set in the project proposal. This document summarizes the systems and components we
will consider as case studies in a range of domains: concurrent libraries, software transactional
memory, operating system kernels, device drivers, eventually consistent replicated stores, weak
memory models, compilers and run-time systems.

1 Selection Criteria

In our selection of case studies, we were guided by the following criteria, whose aim was to
ensure that the effort of the project is focused upon delivering benefits that can be exploited by
real-world applications in a practical software lifecycle structure.

In selecting the target systems, we took into account the following considerations:

• The role within the existing software infrastructure. We preferred to investigate
widely used mainstream software systems over niche systems. This is motivated by our goal
to achieve a maximal impact on the safety and dependability of our society’s information
infrastructure.

• Public source code availability. We focused on open-source implementations over
proprietary code.

• Multiple challenges. We looked for systems from which we can select multiple case
studies coming from different abstraction levels: inter-component interaction mechanisms
(addressed in WP2), hardware interfaces (WP3), inter-language interfaces (WP4) and
components (WP5).

• Familiarity. We considered the existing familiarity with certain application domains
within the consortium and its End-User Panel as an asset when selecting the target systems.

In selecting components and interfaces, we employed the following criteria:

• Core functionality. The most critical and optimized parts of every system are the ones
implementing its core functionality. Therefore, we preferred to consider the parts of the
target systems that implement their such functionality.

• Challenge. We focused on studying mechanisms and components that are beyond the
scope of the existing verification technologies, that the existing technologies handle poorly,
or where the programming concepts themselves are poorly understood.

• Cooperation of system developers. We preferred to consider components whose de-
velopers are open to collaboration with scientific community.

It is likely that we will find more verification challenges during the rest of the project than
the ones described in this document. In this case, such challenges considered as part of the work
done in the work package to which they are relevant.
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2 Concurrent Libraries

Concurrent libraries are collections of useful highly concurrent algorithms that have been pack-
aged together. As with any library, these concurrent libraries try to hide the intricate imple-
mentation details that are needed to achieve good performance by exposing abstract interfaces
to the programmers. They define concepts such as mutual exclusion locks, memory allocation,
container classes, and iterators.

Looking at these libraries is useful for two reasons: (a) they form part of the core infras-
tructure of concurrent applications, and (b) their implementations contain intricate concurrent
algorithms that are worthy of specification and verification. These two properties relate closely
to the goals of WP2 (architecture-driven decomposition) and WP5 (architecture-driven verifica-
tion of complex software components). We will need to formally capture the interfaces provided
by such libraries, in terms of notions such as linearizability and abstraction (cf. Task 2.1), and
also to find ways of verifying some of the more complex algorithms in these libraries, which lie
beyond the current state-of-the-art techniques (cf. Tasks 5.1, 5.3, 5.4). Concurrent libraries will
also be useful for WP3 (especially, Task 3.1) as they would be our primary source of low-level
synchronization idioms that we will have to reason about in the relaxed memory context. They
will also be directly relevant for WP6, as they will be the source of examples for evaluating the
proposed verification tools.

We decided to focus on two such concurrent libraries, java.util.concurrent and Intel’s
Thread Building Blocks (TBB), as they are open-source, mature and widely used libraries and,
moreover, they present two different ways of implementing concurrent algorithms. On the one
hand, java.util.concurrent is written for a Java, a managed language with built-in memory
management (garbage collection), whereas on the other hand, Intel’s TBB targets C/C++
programmers which have to manage memory manually. In terms of algorithms implemented,
java.util.concurrent is somewhat more advanced, but then TBB also has to deal with the
thorny memory management issue.

2.1 java.util.concurrent

First, java.util.concurrent provides direct access to low-level atomic primitives of the
JVM, by defining classes (java.util.concurrent.atomic.*) that implement atomic booleans,
integers, long integers, references, arrays, etc. An interesting structure among these is
AtomicMarkableReference, which represents a pair of a Boolean flag and a reference and pro-
vides atomic read and update operations on it.

Further, it implements a variety of locks and condition variables
(java.util.concurrent.locks.*), as well as a collection of other simple synchronization
primitives. These include count-down latches (CountDownLatch), barriers (CyclicBarrier) ex-
changers (Exchanger) counting semaphores (Semaphore), and phasers (Phaser). Of particular
interest are exchangers, as they can be used as building blocks for improving the efficiency of
other concurrent algorithms. For example, one can use them to turn Treiber’s stack into the
elimination-based HSY stack.

The library also contains a number of advanced concurrent implementations of standard
container data types. These are listed below:

• Blocking single-ended FIFO queues:

– ArrayBlockingQueue: a bounded array implementation,

– LinkedBlockingQueue: a unbounded linked-list implementation,

– SynchronousQueue: a single-element queue similar to a barrier or a rendezvous;

• Non-blocking single-ended FIFO queues:
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– ConcurrentLinkedQueue: an unbounded linked-list implementation,

– LinkedTransferQueue: another unbounded linked-list implementation;

• Double-ended queues (useful for work stealing parallel task scheduling),

– ConcurrentLinkedDeque: a non-blocking unbounded linked-list implementation,

– LinkedBlockingDeque: a blocking linked list implementation;

• PriorityBlockingQueue: a priority queue, where items are attached priorities and the
higher priority item is removed first;

• DelayQueue: a kind of priority queue, where each enqueued item is given a possibly
different number of milliseconds to delay its visibility: items can be removed only after
their delay period has expired;

• ConcurrentSkipListSet: a skip-list implementation of a set;

• ConcurrentSkipListMap: a skip-list implementation of a finite map; and

• ConcurrentHashMap: a hash-table implementation of a finite map.

The more complex algorithms among these are the skip lists and the hashtables, and the non-
blocking double-ended queue. A particularly interesting aspect of the skip list implementations is
their treatment of the deleted nodes: in order to mark them as logically deleted before unlinking
them from the data structure, one inserts a dummy node right after them. Thus, to verify
this algorithm, one cannot take the set of values reachable from the head of the list as the
representation invariant, but one has to define a direct recursive definition that ‘looks ahead’ in
order to discard logically deleted nodes. The concurrent hashtable uses external chaining, and is
somewhat simpler than the skip lists as it uses locking for updating the external linked lists; what
is challenging from a verification perspective is the resizing, and in particular to come up with a
sufficient model of arrays and to verify the resizing of the array as done by the algorithm. Next,
the non-blocking deque (ConcurrentLinkedDeque) combines a number of ideas from earlier
concurrent linked-list algorithms: it would be useful to attempt to see whether the verification
of this algorithm can be decomposed in a way that each of these ideas can be separately specified
and verified. In contrast, the single-ended linked-list queues are adaptations of the two standard
Michael and Scott queue algorithms [59], and are somewhat simpler, which makes them more
suitable for small verification case studies. Since the Michael and Scott queues have already
been proved linearizable in the sequential consistency setting [27, 76], the challenge would be
(a) to extend these proofs to a relaxed memory setting and also (b) to devise alternative proof
techniques that would render the construction of such linearizability proofs more automatic.

2.2 Intel’s Thread Building Blocks

A first notable aspect of the TBB library is that it defines a variety of mutual exclusion and
reader-writer locks (mutex, spin mutex, queuing mutex, spin rw mutex, queuing rw mutex,
recursive mutex, reader writer locks) with various different properties and implementation
costs. Generally speaking all mutexes are supposed to provide mutual exclusion, but some
(namely, the queuing variants) also provide fairness, in the sense that every lock acquisition
command will eventually succeed provided that all critical regions have a finite duration. The
challenge here would be to verify that the mutex implementations achieve mutual exclusion as
well as fairness where applicable.

Next, TBB provides scalable memory allocators that try to avoid synchronization between
threads as much as possible (scalable allocator, cache aligned allocator). This is typi-
cally done by having threads manage their own allocation pool and only when this thread-local
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pool is depleted, do they synchronize with the other threads to request a larger allocation pool.
Another important property of a good concurrent allocator is to avoid creating contention be-
cause of ‘false sharing.’ That is, it should avoid allocating multiple data structures on the same
cache line because then threads logically accessing disjoint memory cells will be considered by
the hardware as effectively operating on the same data, yielding poor performance.

Intel’s TBB also provides highly concurrent implementations of container data
structures that permit multiple threads to invoke a method simultaneously on the
same container. Currently, it provides various concurrent queues (concurrent queue,
concurrent bounded queue), a concurrent resizable array (concurrent vector), and a con-
current hash map (concurrent hash map). The main verification question arising from these
algorithms is to prove that these implementations are linearizable, specifically with respect to
the C11 or the TSO memory model. The implementations themselves are either fine-grained
locking or lock-free, so to prove their correctness one should develop concurrent program logics
that are sound with respect to the TSO and/or C11 memory models. Another question aris-
ing from these container libraries is what kind of ownership transfer happens when inserting
an element to the data structure or removing one element from it. In the latter case, who is
responsible for deallocating the element?

Table 2.2 details the particular tasks pertaining to case studies described below.

3 Software Transactional Memory

Software Transactional memory (STM) runtime systems [71] ease the task of writing concurrent
applications by letting the programmer designate certain code blocks as atomic. The intended
goal of STMs is to allow designing programs and reason about their correctness as if each atomic
block executes as a transaction—in one step and without interleaving with other atomic blocks.

3.1 STM Implementations

STMs are developed using different implementations strategies (see discussion below). Verify-
ing STM implementations is a challenging verification problem as sophisticated algorithms are
used to efficiently maintain the atomic block abstraction. In particular, inspecting STM im-
plementations is interesting as it allows to expose the transactional protocols and idioms they
use. Formalizing the guarantees these protocols provide will allow to develop modular reasoning
techniques that can (i) separately verify different components of an STM and show that they
implement the intended transactional protocols correctly and (ii) combine the separate proofs
leveraging the guarantees provided by the implemented protocols. To illustrate the variety of
approaches for implementing STMs, we briefly discuss some of these implementations below.1

DSTM [38] is an object based STM that maintains two versions of each object, a current
(working) version and an old (stable) version. A transaction marks an object that it is
writing. All read operations in a transaction are validated with every new read.

LSA [66] is also an object based STM. However, it has multiple versions for each object unlike
DSTM that has only two. The validation is done based on validity intervals for snapshots.
There is no revalidation of previous reads, instead a global counter is incremented when
an update transaction commits.

TL2 [25] uses a global version clock. It maintains a lock for every memory location, and
augments it by version number. An update transaction acquire locks on the locations it
writes to, increment the global version clock and try to commit by validating read set.

1ScalaSTM [15] is discussed in Section 3.3.
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Case study WP2 WP3 WP5 WP6

2.1 java.util.concurrent

AtomicMarkableReference T2.3 T3.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

locks.* T2.3 T3.1

CountDownLatch T2.3 T3.1

CyclicBarrier T2.3 T3.1 T5.1, T5.2

Exchanger T2.3 T3.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

Semaphore T2.3 T3.1

Phaser T2.3 T3.1 T5.1, T5.2

HSY-stack T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

ArrayBlockingQueue T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

LinkedBlockingQueue T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

SynchronousQueue T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

ConcurrentLinkedQueue T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

LinkedTransferQueue T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

ConcurrentLinkedDeque T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

LinkedBlockingDeque T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

PriorityBlockingQueue T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

DelayQueue T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

ConcurrentSkipListSet T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

ConcurrentSkipListMap T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

ConcurrentHashMap T2.1 T5.1, T5.2 T6.1, T6.2, T6.3, T6.4

2.2 Thread Building Blocks

mutex T3.1

spin mutex T3.1

queuing mutex T3.1

spin rw mutex T3.1

queuing rw mutex T3.1

recursive mutex T3.1

reader writer locks T3.1

scalable allocator T2.1 T3.1 T5.1, T5.2 T6.1,T6.2,T6.4

cache aligned allocator T2.1 T3.1 T5.1, T5.2 T6.1,T6.2,T6.4

concurrent queue T2.1 T3.1 T5.1, T5.2 T6.1,T6.2,T6.4

concurrent bounded queue T2.1 T3.1 T5.1, T5.2 T6.1,T6.2,T6.4

concurrent vector T2.1 T3.1 T5.1, T5.2 T6.1,T6.2,T6.4

concurrent hash map T2.1 T3.1 T5.1, T5.2 T6.1,T6.2,T6.4

Table 1: Case Studies: Concurrent libraries
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NOrec [23] has a global sequence clock for update transactions. Every transaction maintains
a local write buffer for write operations and writes to the memory only after validating.
Note that transactions do not hold locks while committing.

ASTM [55] is an adaptive STM that switches between two such STMs based on the current
workload. (Some STMs work better for write-dominated workloads, while others work
better for read-dominated workload.)

The challenges provided by verifying STMs’ implementations corresponds closely to WP2
(architecture-driven decomposition), Task 5.2 (Reasoning about transactional idioms).

3.2 Consistency Conditions

Today, the behavior of an STM is defined through a consistency condition that restricts its
possible executions. Several such conditions have been proposed, including opacity [33, 35],
virtual world consistency [43], TMS [50, 29] and DU-opacity [10]. Another consistency condition
[28] for STMs was defined using an I/O automata. Opacity [34] seems to be the most widely
accepted for STMs and most of the known STMs are opaque. Roughly speaking, it means that
all transactions, even aborted ones, have the same serialized view. Virtual world consistency
[43] is a weaker condition and states that the aborted transactions can have different serialized
views of the execution, but committed transactions have the same view.

Consistency conditions provide a description of an STM behavior from the point of view of
their implementation. Unfortunately, These descriptions are not connected to the semantics of
the programming language in which their client programs are written. In fact, it is not clear
which of the aforementioned conditions provide the programmer with behaviors that correspond
to the intuitive notion of atomic blocks, and which of them puts the minimal restrictions on
STM implementations needed to achieve this.

The disconnect between STMs and programming languages thwarts modular reasoning be-
cause it prevents the formal treatment of transactions as atomic blocks, thus going against
the very purpose of using STMs to develop reliable concurrent software! An interesting prob-
lem, thus, is to connect the two views. Specifically, formalizing the intuitive expectations of a
programmer from the transactional system by means of observational refinement [37, 36], and
determining which of the consistency conditions provide the expected notion of atomic blocks
for different choices of programming languages and under different notions of observations are
interesting and important challenges.

Our initial results show that, in certain respects, an opaque STM observationally refines
the notion of atomic blocks in a particular, idealized, programming language [9]. This result
suggests that a programming language-based approach for evaluating and comparing TM consis-
tency conditions is a viable one. Obtaining additional results of this kind for other consistency
conditions and richer programming languages will allow to reduce the effort of proving that a
TM implements its programming language interface correctly (see below), by only requiring its
developer to show that it satisfies the corresponding consistency condition.

This challenge corresponds closely to Task 2.1. (Decomposition on library boundaries) and
Task 5.4. (Integration with decomposition techniques and state-of-the-art) methods.

3.3 Programming Language Interfaces for Transactional Memory

There are several interfaces connecting programming languages with STMs. Below, we list two
interesting examples coming from two different ends of the spectrum of programming languages
community: An interface proposed by the industry (C++ [73]) and an interfaced proposed by
the research community (Scala [60]).
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C++. The Draft Specification of Transactional Language Constructs for C++ [7] introduces
transactional language support for the C++ language. It specifies how C and C++ programs
are to be interfaced with STMs. The specification (or more precisely, an earlier version of it [6])
is supported by Intel C++ STM Compiler (Prototype Edition).2 Intel also provides a few client
applications to be used with their compilers, e.g., an STM-based hashtable.3

The draft allows for two different flavors of transactions, supporting two different lev-
els of isolation: strict transactions ( transaction atomic), which appear to be executed
atomically as an indivisible statement, and relaxed transactions ( transaction relaxed),
where arbitrary-non transactional code can be executed by a transaction and can be inter-
leaved with other non-transactional code. The former requires called functions to be declared
transaction safe, while the latter may include transaction unsafe functions. Unsafe func-
tions may execute irrevocable operations: operations with side effects that the system cannot
roll back (transaction callable). Note that the programming model proposed by relaxed
transactions diverges greatly from the standard model of STMs, and places many challenging
problems both for programmers and for verifiers. An extension of the notion of transactional
statements is offered for transactional expressions, proposed to be used as initializers, that can
be evaluated outside of a transaction body as if executed inside a transaction.

The draft also allows for transaction cancellation using the transaction cancel construct,
which ensures that a canceled transaction has no effect and avoids the need to write cleanup
code to undo the partial effects of an atomic transaction statement. In addition, a programmer
can throw an exception from a canceled transaction by combining the cancel statement with a
throw statement to form the cancel-and-throw idiom.

Transactions can also be nested within an outer transaction. Only the outer transaction
can cancel the transaction. The precise semantics of nested transactions is not made clear in
the standard; ordering constraints are specified only for the outer transactions.

As discussed above, the proposed C++/STM interface provides certain challenging fea-
tures for formalization and verification, such as the interrelation between transactional and non-
transactional code. We note that the standard is still at its formative stages, and request for
comments is made for the community of researchers and practitioners in order to gather feedback
for the next version of the standard.4 This provides a unique opportunity for the formal studies
performed within the ADVENT project to impact the future of STM-based programming.

Scala. ScalaSTM [15] is a proposed programming interface for using STMs in the SCALA
language [60], and provides an API that supports multiple STM implementations. ScalaSTM
provides an interesting take on the STM-based programming model. Addressing the scalabil-
ity/performance problem imposed by the need to track every load and store, ScalaSTM manages
only Ref-s (mutable memory cells). This means that there are fewer memory locations to man-
age, and no bytecode instrumentation or compiler modifications are required. The usefulness of
Ref-s is multiplied by the language’s good support for immutable data structures.

To write transactions, programmers need to wrap their code inside atomic blocks. As usual,
atomic blocks can contain composed operations. However, special support is given to single-
operation instructions: Ref.single returns an instance of Ref.View, which acts just like the
original Ref except that it can also be accessed outside an atomic block. Each method on
Ref.View acts like a single-operation transaction, hence the name. Ref.View provides several
methods that perform both a read and a write, such as swap, compareAndSet and transform,
which act as indicated by their names.

ScalaSTM also provides a retry facility which can allow an atomic block whose operation
cannot be completed on its current input state to roll back, wait for one of its inputs to change,

2http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition
3https://secure-software.intel.com/en-us/system/files/article/139902/intel-stmtest-hashtable.c
4http://groups.google.com/group/tm-languages
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and then retry execution. This is roughly analogous to a call to wait where ScalaSTM auto-
matically generates the matching notifyAll.5 Another way to proceed after an atomic block
ends in retry is to provide an alternative: It is possible to chain atomic blocks using orAtomic;
the lower alternatives will be tried if the upper ones call retry. This lets compose functions that
block using retry, or to convert to and from blocking behavior.

The use of retry, and rollbacks in general is quite delicate: ScalaSTM might need to try an
atomic block more than once before it succeed. Any call into the STM might potentially discover
the failure and trigger the rollback and retry. Local non-Ref variables that have a lifetime longer
than the atomic block will not be rolled back, and so they should be avoided. This means that
a client can observe the (partial progress) of an aborted transaction!

ScalaSTM provides scalable concurrent sets (TSet) and maps (TMap) that can be used in-
side or outside transactions. These data structures support consistent iterations by making
TMap.View.iterator and TSet.View.iterator return an iterator over an atomic snapshot of
the collection. The user can also generate snapshot of these data using the clone function:
TMap and TMap.View return an immutable.Map from snapshot; TSet and TSet.View return an
immutable.Set. The TMap resp. TSet returned from clone is a fully-functional transactional
(and concurrent) collection. Implementation-wise, TMap and TSet use mutable hash tries con-
structed from Ref-s, with generation numbers that control copy-on-write. The algorithm that
supports these features is a novel hybrid of Nathan Bronson’s SnapTree [18] and Transactional
Predication [19], described in Chapter 4 of his thesis [17].

To summarize, many STMs implementations exist, different implementations satisfy different
correctness conditions, and programmers are expected to use STMs via a variety of program-
ming language interfaces, where different interfaces provide different capabilities and expose
different semantics. This makes actual programming with STMs nontrivial, e.g., when relaxed
transactions in C++, which breaks the notion of atomicity, are used.

This case study corresponds closely to the goals of WP2 (architecture-driven decomposition
and WP5 (Architecture-driven verification of complex software components). Understandings
gained from this studies can affect the future development of STMs, in concert with the desired
impact discussed above.

Table 3.3 details the particular tasks pertaining to case studies described below.

4 Operating System Components

In the operating systems domain, we will primarily use case studies from the Linux operating
system. Linux is a widely-used open-source operating system, used for desktops and servers
and also serving as the basis for the ubiquitous Android mobile phone system. It is relatively
well-documented, with books on architecture [54] and a code commentary [16] available. As
such, it is ideal to motivate the development of reasoning principles for systems software in the
project. We will refer both to the most up-to-date version of the system, and to its older version
2.6.11 covered by the existing code commentary [16]. The following components form the most
promising case studies relevant to the project.

Table 4.4 details the particular tasks pertaining to case studies described below.

4.1 Scheduler and Process Management

Task 2.2 is concerned with reasoning about virtualizing components, which provide the illusion
to the rest of the system of running on a higher-level machine. A scheduler and, more generally,

5As part of its implementation of optimistic concurrency, the STM keeps track of the read set of every atomic
block, i.e., the set of Ref-s that have been read during the execution of the atomic block. This means that the
STM can efficiently block the current thread until another thread has written to an element of its read set, at
which time the atomic block can be retried.
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Case study WP2 WP5 WP6

3.1 STM Implementations

DSTM T2.1 T5.2 T6.1

LSA T2.1 T5.2 T6.1

TL2 T2.1 T5.2 T6.1

NOrec T2.1 T5.2 T6.1

ASTM T2.1 T5.2 T6.1

3.2 Consistency Conditions

Opacity T2.1 T5.4

VWC T2.1 T5.4

TMS1 T2.1 T5.4

TMS2 T2.1 T5.4

DU-opacity T2.1 T5.4

3.3 Programming Language Interfaces
for Transactional Memory

C++

strict transactions T2.1 T5.4

relaxed transactions T2.1 T5.4

rrevocable operations T2.1 T5.4

transactional expressions, T2.1 T5.4

transaction cancellation T2.1 T5.4

ScalaSTM

Ref.Single T2.1 T5.3

Ref.View T2.1 T5.3

retry T2.1 T5.3

notifyAll T2.1 T5.3

TMap.View.iterator T2.1 T5.3

TSet.View.iterator T2.1 T5.3

Table 2: Case Studies: Software transactional memory
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process management code is an example of such a component: it provides the illusion of a
machine where every process has a dedicated CPU. We will use the Linux scheduler and process
management code to motivate the development of the corresponding reasoning principles. Of
particular interest are:

• Implementation of wait queues: the functions manipulating the wait_queue_t structure.

• The context switch code: the switch_to macro.

• Process creation, such as the fork() function.

• Scheduling functionality, such as runqueue manipulations (the runqueue structure) and
the scheduler_tick() function.

4.2 Virtual Memory Subsystem

Virtual memory is another example of a virtualizing component: it provides the illusion of a
machine where every process has unbounded memory. The virtual memory implementation
in Linux is extremely subtle, primarily due to the desire to achieve maximal performance on
multicore architectures. For example, for every user process in Linux, the virtual memory
subsystem maintains its virtual address space description and page tables; additionally, memory
region descriptors of different processes are linked by data structures used to optimism memory
reclamation. All these data structures are interrelated, yet concurrently accessible, with on-
demand and copy-on-write memory allocation and memory reclamation running alongside each
other. Furthermore, the data structures make references to two layers of physical memory
managers, a page cache and underlying filesystems, again, all concurrently accessible. Safety
is ensured by a sophisticated combination of fine-grained locking and non-blocking techniques.
Considering the virtual memory subsystem will therefore motivate not only the development in
Task 2.2, but also the development in Tasks 5.1 and 5.3. The particular pieces of functionality
we will pay attention to are as follows:

• The zoned page frame allocator (e.g., the alloc_page function) is the primary mecha-
nism of allocating memory on the granularity of pages. Its interesting features include
supporting concurrent access and keeping per-CPU caches of free pages.

• The slab allocator (mm/slab.c) is implemented on top of the page frame allocator, which
allocates objects of the same time. This allocator also allows for concurrent access. An-
other feature challenging for verification is the deferred freeing of objects using RCU (see
below).

• Functions managing the process address space and its mapping to the physical one via page
tables. These include routines for allocating and deallocating memory, demand paging,
copy-on-write and the page-fault handler (e.g., do_page_fault()). They exhibit lots of
verification challenges, including the use of interlinked data structures and fine-grained
concurrency, as explained above.

• The Virtual File System is a kernel software layer that handles all system calls related to a
standard Unix filesystem. In the context of virtual memory, it will be primarily interesting
for its interactions with the rest of the virtual memory subsystem, e.g., by swapping unused
pages from the memory to the disk and back.

4.3 Interrupt Handling

Communication with external devices in systems software is done with the aid of interrupts,
programmed via a hardware circuit called the interrupt controller. Developing reasoning meth-
ods for the code interacting with interrupt controllers is the subject of Task 3.3. To motivate
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this development, we will consider Linux’s code interacting with Intel’s I/O Advanced Pro-
grammable Interrupt Controller (I/O APIC). This code is very subtle and challenging to reason
about because of the level of concurrency involved: we have to deal with multiple asynchronously
arriving interrupts that have different priorities and may be handled by different CPUs in the
system. Our starting point will be the do_irq() function, which is invoked to execute all inter-
rupt service routines associated with an interrupt. We will also consider the implementations
of the abstraction of deferrable functions, which allow taking non-urgent processing out of the
interrupt context. Linux provides several flavors of these:

• Softirqs are statically allocated and can run concurrently on several CPUs; thus, they are
reentrant functions. The entry point for the relevant code is the do_softirq() function.

• Tasklets can be allocated and initialized at runtime and their execution is controlled more
strictly by the kernel than that of softirqs: tasklets of the same type are always serialized.
The entry point for the relevant code is the tasklet_schedule() function.

• Work queues allow kernel functions to be activated and later executed by special kernel
worker threads. The entry point for the relevant code is the queue_work() function.

The implementations of these features on top of the interrupt handling mechanism in Linux will
also motivate the development in Task 2.3.

4.4 RCU Synchronization

Read-Copy-Update (RCU) [58, 56] is a non-standard synchronization mechanism that allows
multiple readers to access a shared object concurrently with a single writer. RCU synchroniza-
tion is attractive because it allows efficient implementations in which readers incur a minimal
synchronization overhead, if any at all. It has achieved a widespread adoption in the operat-
ing systems domain, becoming one of the most used synchronization mechanism in the Linux
kernel (see., e.g., linux/kernel/rcupdate.c) [16]. In an operating system kernel, its efficiency
is achieved by piggy-backing on the implementation of the scheduler; however user-level imple-
mentations also exist [24] [5]. RCU has been used to construct a number of concurrent objects,
including concurrent hash tables [75], concurrent red-black trees [42] and software transactional
memory implementations [41].

The unique aspect of the RCU synchronization mechanism is a sync command that allows a
writer thread to block until all the reader threads that are accessing the concurrent object at the
time the sync command (called synchronize rcu() in the Linux Kernel) is invoked exit their
critical sections. The writer, however, does not have to wait for readers that enter their critical
sections after sync is invoked. Programmers use this primitive in different and subtle ways. For
example, one typical pattern is to use sync to wait until all the readers drop their references to
a certain object before deallocating it. Indeed, RCU-based memory reclamation, implemented
by the rcu reclaim() method, is key in Linux Kernel [57]. Another, more subtle use of sync,
is to ensure that readers see a sequence of modifications in a particular order. The latter use is
exploited in implementations of data structures such as hash tables [75] and red-black trees [75]
to ensure their linearizability [40]—the property that plays the role of functional correctness for
concurrent objects.

The form of synchronization provided by RCU is very different from those provided by clas-
sical synchronization primitives, such as mutexes, monitors or reader-writer locks. Algorithms
using RCU are also different from non-blocking algorithms [39], as the latter only use low-level
compare-and-swap operations, while RCU provides a higher-level synchronization abstraction.
All this makes existing methods for reasoning about concurrent algorithms with either high-
level [61, 48] or low-level [30, 77, 26, 21] primitives inappropriate for reasoning about RCU-based
ones.
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Case study WP2 WP3 WP5 WP6

4.1 Scheduler and Process Management

wait q t T2.2 T3.1

switch to T2.2 T3.1

fork() T2.2 T3.1

scheduler tick() T2.2 T3.1

runqueue T2.2 T3.1

4.2 Virtual Memory Subsystem

zoned page frame allocator T2.2 T3.2 T5.1, T5.3

slab allocator T2.2 T3.2 T5.1, T5.3

process address space mapping T2.2 T3.2 T5.1, T5.3

virtual file system T2.2 T3.2 T5.1, T5.3

4.3 Interrupt Handling

do irq() T2.3 T3.3

do softirq() T2.3 T3.3

tasklet schedule() T2.3 T3.3

queue work() T2.3 T3.3

4.4 RCU Synchronization

rcuupdate.c T2.3 T2.3 T5.1 T6.1

synchronize rcu() T2.3 T2.3 T5.1 T6.1

rcu reclaim() T2.3 T2.3 T5.1 T6.1

rcu-based hashmap T2.3 T2.3 T5.1 T6.1

rcu-based red/black tree T2.3 T2.3 T5.1 T6.1

Table 3: Case Studies: Operating systems components

We have already obtained initial results that allow to verify RCU implementations [32] for
sequentially consistent memory. However, this was done in an idealistic setting, as no existing
hardware provides this kind of consistency. Specifically, RCU is designed to work in weak-
memory environments, hence extending our reasoning techniques (or developing new ones) to
such environments is a challenging problem.

Relativistic programming [42, 75] is a novel programming technique advocated by highly
experience system programmers. It offers a programming methodology that leverages the pref-
erential treatment of readers by RCU to implement concurrent data structures that provide
high-performance in practice. While attractive, the methodology has no formal basis and no as-
sociate reasoning techniques which hider it adoption. An interesting challenge is to provide such
a formalization to this methodology and develop the accompanying set of reasoning techniques.

To summarize, specific test cases include RCU-based concurrent hash table [75] and red-black
tree [42] data structures as well as (submodules of) the RCU implementation found in Linux
(/linux/kernal/rcuupdate.c, linux/kernel/rcutiny.c, and /linux/kernel/rcutree.c).
The latter is particularly challenging because of the subtle interactions between the RCU imple-
mentation and the scheduler. We have already established contact with Paul Paul McKenney, a
Distinguished Engineer at IBM Linux Technology Center (USA), who is the developer of RCU
and its maintainer in Linux. He and his group will keep us updated about the developments in
the area, which will let us adjust the list of case studies as necessary.

This test case is of interest to WP2 (Architecture-driven decomposition), Tasks 3.1 (Reason-
ing on weak memory models) and 5.1 (Spatio-temporal reasoning).

Table 4.4 details the particular tasks pertaining to case studies described below.
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5 Device Drivers

A device driver is a piece of code that adds support for a particular type of hardware device
to an operating system. As a trivial example, the Linux USB mouse driver, usbmouse.c, when
it detects the presence of a USB mouse device, registers itself with the Linux kernel’s USB
subsystem as a listener for incoming events from the device. When it receives such an event,
such as a “mouse moved” event, it forwards it to the Linux kernel’s input subsystem, which in
turn offers it through a generic interface to application programs in user space.

Device drivers constitute interesting case studies for the technologies to be developed in this
project, for both technical and pragmatic reasons. Technically, firstly, because they are highly
concurrent: events come in concurrently from hardware devices and applications, and to optimize
throughput and responsiveness, synchronization must be efficient; secondly, device drivers are
programmed in a highly asynchronous style; and thirdly, the kernel APIs used by device drivers
have particularly complex and intricate semantics. Pragmatically, formal verification of device
drivers is especially useful because device drivers are often written by relatively inexperienced
hardware device manufacturers rather than the core kernel developers; furthermore, since they
are relatively small and self-contained, their formal verification is more likely to be economically
feasible.

Device drivers are particularly appropriate case studies for architecture-driven verifica-
tion, since they are embedded within a particular kernel’s architecture. They benefit WP2
(Architecture-driven decomposition), since device drivers are typically combined into stacks of
drivers where each layer implements a higher-level abstraction (e.g. a mouse interface) on top of
a lower-level abstraction (e.g. a USB interface), which in turn is implemented by another driver
on top of bare hardware. Within WP5 (Architecture-driven verification of complex software
components), relevant tasks include Task 5.1 (Spatio-temporal reasoning), since device drivers
manipulate resources (spatial) in a concurrent and interactive setting (temporal); and Task 5.3
(Modular verification for interlinked structures), since such structures are prevalent in operat-
ing system kernels. The case studies benefit also WP6 (Automation), including in particular
Tasks 6.1 (Automation for spatio-temporal reasoning) and 6.2 (Pattern- and paradigm-based
automation), the latter because device drivers often display recurring patterns and are written
in a particular programming paradigm. All case studies will of course critically support (and be
supported by) Task 6.4 (Tool infrastructure).

While device drivers for Windows, Linux, Mac OS X, or any other operating system are in
principle equally suitable as case studies, we will use Linux device drivers because 1) most Linux
device drivers are open source, giving access to a large library of real-world code on which to
test our technologies, 2) the operating system itself and the development environment are open
source, allowing maximum information and freedom in experimentation, and 3) we already have
some experience in verifying Linux device drivers [64]. However, we believe the technologies
we will develop will be equally applicable to device drivers for other, more widely deployed
operating systems.

Specific examples of interesting and important device drivers include:

• Network interface drivers, such as Intel’s open source e1000e driver for modern Intel on-
board Ethernet adapters or iwlwifi for Intel wireless network interface cards

• Mass storage drivers, such as the SCSI driver sd.c. Linux uses this driver also for non-
SCSI devices which are exposed by lower layers of the Linux driver stack as virtual SCSI
devices, including SATA hard disk drives or optical drives and USB mass storage devices.

Notice that the above device drivers are potentially exposed to malicious content; therefore,
they should be resilient not just against malformed data caused by random events but also
against intentionally crafted malformed data.
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Case study WP2 WP3 WP6

e1000e T2.1 T5.1, T5.3 T6.1, T6.2, T6.4

iwlwifi T2.1 T5.1, T5.3 T6.1, T6.2, T6.4

sd.c T2.1 T5.1, T5.3 T6.1, T6.2, T6.4

usbmouse.c T2.1 T5.1, T5.3 T6.1, T6.2, T6.4

usbkbd.c T2.1 T5.1, T5.3 T6.1, T6.2, T6.4

Table 4: Case Studies: Device drivers

To give a better idea of the state of the art and the challenges we will confront, in the
remainder of this section we will discuss two device drivers that we have already worked on in
earlier work: usbmouse.c and usbkbd.c. Note that these drivers are much simpler than the ones
identified above. The former is more or less the simplest possible device driver, and therefore
offered a good first step for the incremental development of our technologies. The latter includes
another instance of the simple pattern implemented by usbmouse.c; additionally, it also includes
a more complex pattern of concurrent interaction, which will likely benefit from spatio-temporal
reasoning for simpler specification and verification.

usbmouse.c This driver communicates with USB mouse devices through the USB HID (Hu-
man Interface Device) Boot Protocol. (The Boot Protocol is a simplified variant of the more
comprehensive Report Protocol and is intended to be used in constrained systems, such as
embedded systems.) The driver registers itself with the Linux kernel’s USB subsystem to be no-
tified of incoming events from the mouse device (in particular, move events and button events),
and forwards these to the Linux kernel’s input subsystem, which in turn offers them through
a general interface to application programs in user space. usbmouse.c has 173 lines of code
(excluding comments and blank lines), and consists of the following functions: usb mouse irq,
usb mouse open, usb mouse close, usb mouse probe, and usb mouse disconnect.

We have verified memory safety, data-race-freedom, and compliance with API constraints
of this driver. However, this verification exercise currently requires too much manual work: we
obtain an annotation overhead of 167 lines of annotations for every 100 lines of code when using
our verification tool VeriFast [64]; therefore, we will develop automation technology to reduce
the verification effort. Furthermore, currently there is no way to modularly specify and verify
the correct I/O behavior of this driver. This is another aspect that we will focus on.

usbkbd.c This driver communicates with USB keyboard devices through the USB HID Boot
Protocol. Similarly to usbmouse.c, it registers to receive key events from the keyboard device
and forwards them to the input subsystem; furthermore, it receives keyboard LED state change
requests from applications through the input subsystem and forwards them to the keyboard
device. While these are in principle two more occurrences of the same pattern exemplified by
usbmouse.c, a complication is introduced by the fact that a LED change request can come
in while another LED change request is being processed. Dealing with this race condition
complicates in particular the verification of correct cleanup when the device is concurrently
being disconnected. Our current approach to the verification of this pattern, as described in
[64], is rather cumbersome. In addition to the goals of automation and I/O verification, we hope
to simplify the verification of this pattern using spatio-temporal reasoning.

Table 5 details the particular tasks pertaining to case studies described below.

6 Eventually Consistent Replicated Stores

Cloud computing allows moving services, computation and/or data off-site to an internal or
external, centralized facility. By making data available in the cloud, it can be more easily and
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ubiquitously accessed, often at much lower cost, increasing its value by enabling opportunities
for enhanced collaboration, integration, and analysis on a shared common platform.

To achieve availability and scalability, cloud systems often rely on replicated stores, allowing
multiple clients to issue operations on shared data on a number of replicas, which communicate
changes to each other using message passing. For example, large-scale Internet services rely on
geo-replication, which places data replicas in geographically distinct locations, and applications
for mobile devices store replicas locally to support offline use. One benefit of such architectures
is that the replicas remain locally available to clients even when network connections fail. Un-
fortunately, the famous CAP theorem [26] shows that such high Availability and tolerance to
network Partitions are incompatible with strong Consistency, i.e., the illusion of a single cen-
tralized replica handling all operations. For this reason, modern replicated stores often provide
weaker forms of consistency, commonly dubbed eventual consistency [74]. Here ‘eventual’ refers
to the guarantee that, if clients stop issuing update requests, then the replicas will eventually
reach a consistent state.

Geo-replication is a hot research area, and new architectures for eventually consistent systems
appear every year [31, 52, 72, 70, 20, 51, 11, 22]. Unfortunately, whereas consistency models of
classical relational databases have been well-studied [63, 12], those of geo-replicated systems are
poorly understood. The very term eventual consistency is a catch-all buzzword, and different
systems claiming to be eventually consistent actually provide subtly different guarantees. This
makes eventually consistent replicated stores a fruitful source of case studies for applying formal
techniques. Below we describe the replicated eventually consistent stores and their components
that we identified as case studies.

6.1 Replicated Data Types

Eventually consistent replicated stores allow the replicas to be temporarily inconsistent. This
enables them to satisfy clients’ requests from the local replica immediately, and broadcast the
changes to the other replicas only after the fact, when the network connection permits this.
However, this means that clients can concurrently issue conflicting operations on the same
data item at different replicas; furthermore, if the replicas are out-of-sync, these operations
will be applied to its copies in different states. For example, two users sharing an online store
account can write two different postcodes into the delivery address; the same users connected
to replicas with different views of the shopping cart can also add and concurrently remove the
same product. In such situations the store needs to ensure that, after the replicas exchange
updates, the changes by different clients will be merged and all conflicts will be resolved in a
meaningful way. Furthermore, to ensure eventual consistency, the conflict resolution has to be
uniform across replicas, so that, in the end, they converge to the same state.

The protocols achieving this are commonly encapsulated within replicated data types that
implement objects such as registers, counters, sets or lists, with various conflict-resolution strate-
gies. The strategies can be as simple as establishing a total order on all operations using times-
tamps and letting the last writer win, but can also be much more subtle. Thus, a data type can
detect the presence of a conflict and let the client deal with it: e.g., the multi-value register used
in Amazon’s Dynamo key-value store [31] would return both conflicting postcodes in the above
example. A data type can also resolve the conflict in an application-specific way. For example,
the observed-remove set [69] processes concurrent operations trying to add and remove the same
element so that an add always wins, an outcome that may be appropriate for a shopping cart.
Replicated data type implementations are often nontrivial, since they have to maintain not only
client-observable object state, but also metadata needed to detect conflicts and resolve them and
to handle network failures. This makes reasoning about their behavior challenging. Replicated
data type implementations will provide case studies for Task 5.1; they will also be relevant for
the development of techniques for reasoning about weak memory consistency in Task 3.1.

We will consider a number of data types as case studies.
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• Registers: last-writer-wins register and multi-value register [31].

• Counters, including recent highly-optimized implementations [8].

• Sets and set-based data types, such as graphs, with various conflict resolution policies [70,
69, 13, 14].

• Sequence data types, used for collaborative editing [67, 65].

We will consider both published data type designs and, where available, their actual implemen-
tations in the context of replicated stores, such as Riak [3] (see below). We have also established
contact with Marc Shapiro’s group at UPMC/INRIA (Paris) working on replicated data types.
This group will keep us updated about the developments in the area, which will let us adjust
the list of case studies as necessary.

6.2 Whole-System Architecture

The following replicated stores will serve as case studies both for the high-level aspects of archi-
tecture used in distributed systems and for the challenging low-level components. The variants
of eventual consistency they provide as an interface to the programmer (causal+, RedBlue, etc.;
see below) will also serve as an object of study. In the cases when the systems source code is
not publicly available, we will rely on the descriptions of the systems architecture published in
systems conferences and on direct contacts with the systems developers. The stores we consider
will provide case studies for Tasks 2.2, 5.1 and 5.2.

Riak [4]. Riak is an open-source eventually consistent replicated store written in Erlang.
Unlike the systems considered below, it provides a relatively simple key/value data model: data
items usually consist of a string which represents the key and the actual data which is considered
to be the value in the “key - value” relationship. Using the recent riak_dt package [3], a value
in Riak can be represented by a replicated data type. This component of Riak will therefore
serve to highlight the interfaces between realistic implementations of replicated data types and
the rest of the replicated store implementation.

Another interesting aspect of Riak architecture is that data is automatically distributed
evenly across nodes using consistent hashing, which ensures that new nodes can be added with
automatic, minimal reshuffling of data. Namely, when machines are added, data is rebalanced
automatically with no downtime. New machines take responsibility for their share of data by
assuming ownership of some of the key ranges; existing cluster members hand off the relevant
ranges of the key space and the associated data. Programming such data distribution and recon-
figuration is challenging and the corresponding code will serve as a fruitful source of challenges
for formal verification.

COPS [52] and Eiger [53]. The COPS system and its successor, Eiger, provide consistency
guarantees stronger than those of simple key-value stores such as Riak. Namely, they implement
causal consistency with convergent conflict handling, or for short, causal+ consistency. Unlike
purely eventually consistent systems, causal+ consistency ensures that the data store respects
the causal dependencies between operations. For example, if a user uploads a picture to a web
site, the picture is saved, and then a reference to it is added to that user’s album, then pro-
grammers never have to deal with the situation where they can get the reference to the picture
but not the picture itself. COPS and Eiger systems support applications that are hosted from a
small number of large-scale datacenters and ensure that data propagation between them respects
causal dependencies of the kind just illustrated. The promising aspects of the systems architec-
ture to be investigated are the algorithms used to track and preserve such causal dependencies,
the garbage collection of the meta-data needed for this and the algorithms used to implement
lightweight forms of transactions over the data.
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Gemini [51]. The Gemini system goes further than COPS and Eiger in strengthening the
consistency guarantees, by letting several consistency levels coexist within the same system.
The resulting consistency model is called Red-Blue consistency. The intuition behind it is that
blue operations execute locally and are lazily replicated in an eventually consistent manner. Red
operations, in contrast, are serialized with respect to each other and require immediate cross-site
coordination. RedBlue consistency preserves causality in all cases. Algorithms implementing
the mixed consistency model and the consistency model itself should prove an interesting object
of study from the perspective of software verification.

To increase the number of cheaper Blue operation, Gemini allows the programmer to decom-
pose operations on the database into two components: (1) a generator operation that identifies
the changes the original operation should make, but has no side effects itself, and (2) a shadow
operation that performs the identified changes and is replicated to all sites. Only shadow op-
erations are colored red or blue. This broadens the space of potentially blue operations, but
requires careful reasoning that the decomposition into generator and shadow operations does
not violate application invariants. Therefore, in addition to the implementation of Gemini, we
will also consider the architecture of applications that have been implemented on top of it [51].

We have already established contacts with the team of Gemini’s developers at Universi-
dade Nova de Lisboa and MPI-SWS (one of the partners). They will help us in our formal
investigations of the system architecture and will keep us updated about ongoing developments.

Walter [72]. Walter is a geo-replicated key-value store that supports transactions with a
nontrivial consistency guarantee called Parallel Snapshot Isolation (PSI). This aims to provide
a balance between consistency and latency appropriate for web applications. With PSI, clients
accessing the same replica observe transactions according to a consistent snapshot and a common
ordering of transactions. Across replicas, PSI enforces only causal ordering, not a global ordering
of transactions, allowing the system to replicate transactions asynchronously across sites. We
will study both the consistency guarantee for transactions exported as an interface to the user
and the architecture used to implement transactions with this consistency level.

6.3 Erlang OTP Library

Eventually consistent stores are often written using specialized libraries aiming to make pro-
gramming distributed systems easier. One such library that has achieved a widespread adoption
is Erlang’s Open Telecom Platform (OTP) [1], e.g., used by Riak [4]. The library provides ab-
stractions of common protocol patterns, called behaviors. A behavior consists of a library that
implements a pattern of communication, plus the expected signatures of the callback functions.
An instance of a behavior needs some interface code wrapping the calls to the library plus the
implementation callbacks, all largely free of message passing.

We will study the interfaces and architecture of the OTP library and, in particular, the
following three main behaviors that are challenging for verification:

• Generic server (gen_server). The generic server abstracts the standard request-response
message pattern used in client-server or remote procedure call protocols in distributed
computing. It provides sophisticated functionality: responses can be delayed by the server
or delegated to another process; calls have optional timeouts; the client monitors the server
so that it receives immediate notification of a server failure instead of waiting for a timeout.

• Generic finite state machine (gen_fsm). Many concurrent algorithms are specified in terms
of a finite state machine model, and this behavior implements this pattern. The message
protocol that it obeys provides for clients to signal events to the state machine, possibly
waiting for a synchronous reply. The application-specific callbacks handle these events,
receiving the current state and passing a new state as a return value.
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Case study WP2 WP5

6.1 Replicated Data Structures

Registers T2.1 T5.1

Counters T2.1 T5.1

Sets T2.1 T5.1

Graphs T2.1 T5.1

Sequence types T2.1 T5.1

6.2 Whole-System Architecture

Riak T2.1

COPS T2.1

Eiger T2.1

Gemini T2.1

Walter T2.1

6.3 Earlng OTP Library

gen server T2.1 T5.1, T5.3

gen fsm T2.1 T5.1, T5.3

gen Event T2.1 T5.1, T5.3

Table 5: Case Studies: Eventually consistent replicated stores

• Generic event handler (gen_event). An event manager is a process that receives events as
incoming messages, then dispatches those events to an arbitrary number of event handlers,
each of which has its own module of callback functions and its own private state. Handlers
can be dynamically added, changed, and deleted. Event handlers run application code
for events, frequently selecting a subset to take action upon and ignoring the rest. This
behavior naturally models logging, monitoring, and “pubsub” systems.

These provide case studies relevant to Tasks 2.1 and 5.1. Table 6.3 details the particular tasks
pertaining to case studies described below.

7 Weak Memory Models

In a sequential setting, the behavior of memory is simple: when a program reads a memory
location, it receives the value that it wrote most recently to that location. In a concurrent
setting, where the program does not define a total order on all memory accesses, however,
this simple rule no longer applies. The question of what values may be yielded by reads in
concurrent programs is known as the platform’s memory consistency model (or memory model
for short). The simplest model, which is most commonly assumed in the literature but which is
not implemented by any commonly used programming platform, is sequential consistency (SC):
in a sequentially consistent execution, there is a total order on all memory accesses such that
each read yields the value of the most recent preceding write in that total order. Any memory
model which admits non-SC executions is called a weak memory model.

The memory models offered by processor architectures are weak due to performance-
enhancing measures such as local caches, pipelines, and speculation. The memory models offered
by programming languages are weak both due to the weakness of the target architecture and due
to compiler optimizations such as common subexpression elimination and loop-invariant code
motion.

The increasing reliance on parallelism for performance means that upholding the fiction of
SC, which requires the insertion of expensive and often unnecessary memory barriers into pro-
grams, is no longer feasible: developers must program directly against the weak memory models
that are offered by programming languages such as C and C++ and by processor architectures
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such as x86/x64 and ARM/POWER. However, they currently lack the reasoning principles and
tool support to do so safely. The goal of Task 3.1 (Reasoning on weak memory models) is to
address this problem. In this section, we identify a number of important weak memory models
that can serve as case studies for the technologies developed in Task 3.1 and elsewhere. We also
identify a program that interacts with the memory model in an interesting way.

x86-TSO [62] is the memory model offered by Intel and AMD’s x86 and x64 processors, and
is therefore the relevant processor memory model for most desktop systems and many server
systems. It is defined using the concept of a store buffer : in the x86-TSO memory model, each
hardware thread (hereafter called processor for simplicity) has a dedicated store buffer, which is
a FIFO buffer storing values that have been written by the processor but that have not yet been
propagated to main memory. Specifically, whenever the processor (which for the purposes of
defining this model is assumed to simply execute the program in textual order) performs a write
operation, this operation (i.e. the address and the value) is added to the end of the processor’s
write buffer. When the processor performs a read operation, there are two cases: if a write to
the same location is in the store buffer, the value of the most recent such write is returned.
Otherwise, the value in main memory is returned. (Here, main memory is assumed to be SC.)
Thirdly, at indeterminate points in time, propagations may happen: a propagation means that
a write operation is removed from the front of a write buffer and executed on main memory.

Notice that in this model, all processors see all writes except their own in the same total
order. Hence, the name Total Store Order. An alternative way to look at the model is to say
that all writes happen in a global total order, but reads by a processor may be satisfied by old
writes from the same processor instead of by the current value in main memory.

To enable mutual exclusion, x86 architecture instructions can be augmented with a LOCK
prefix. In that case, in the x86-TSO model, propagations by any processor are blocked for the
duration of the instruction, and the issuing processor’s store buffer is flushed completely at the
end of the instruction. For example, the CMPXCHG instruction combined with the LOCK
prefix can be used to implement the standard compare-and-swap operation. Furthermore, the
architecture includes an MFENCE instruction whose only effect is to flush the local store buffer.

The x86-TSO model is a relatively strong memory model: many useful concurrency con-
structs can be built without the need for LOCK prefixes or MFENCE instructions. The
producer-consumer pattern is an example of this: since store buffers are FIFO, storing a pointer
to a data structure only after the data structure is initialized is sufficient to ensure that other
processors will see only the initialized state of the data structure.

The memory model of Oracle’s SPARC instruction set architecture, SPARC-TSO, is similar
to x86-TSO.

Power ISA [68] is the instruction set architecture implemented by IBM’s POWER7 and
POWER8 processors for server systems, as well as by a range of other processors by various
manufacturers for applications ranging from embedded systems to supercomputing, including
the processors in Microsoft’s Xbox 360, Sony’s Playstation 3, and Nintendo’s Wii and Wii U
game consoles (but not the Xbox One or Playstation 4, which use x64 processors). Its memory
model is much more relaxed than x86-TSO. It, too, is defined using a model with a number of
processors interacting with a storage subsystem, but there are two major differences. Firstly,
a processor does not execute its instruction stream in-order; reads to distinct locations may be
satisfied out of order and speculatively, and writes to distinct locations may be committed out
of order. Secondly, the storage subsystem does not offer a total store order: writes to distinct
locations may be propagated to different processors in different orders.

On the Power ISA, most forms of communication between processors require the use of fence
instructions, possibly combined with instruction dependencies. The typical message passing
pattern, where an object is initialized and then published by setting a flag or writing its address
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to a shared variable, requires an lwsync (lightweight synchronization) fence on the sender side
and an address dependency or a control-with-isync dependency, or an lwsync, on the receiver
side between the read that notices the publication and the reads that inspect the object.

To regain SC, which is rarely necessary for inter-thread communication but which may be
desirable when implementing a high-level programming language, the heavier sync instruction
is necessary. For example, in Dekker’s test where each thread sets its own flag and then checks
the other thread’s flag, under SC it is impossible that neither thread sees the other thread’s flag.
To rule out this case on Power, a sync must be inserted between the write and the read in each
thread; an lwsync is insufficient.

On Power, read-modify-write operations are implemented using the load-reserved and store-
conditional pair of instructions. The store-conditional instruction performs the store operation
only if no write by another thread intervened after the preceding load-reserved instruction. In
contrast to x86’s LOCK prefix approach, the load-reserved and store-conditional pattern is not
wait-free: other threads’ interference may delay a thread’s progress indefinitely.

The memory model of the ARM instruction set architecture, a very popular architecture for
mobile devices, is very similar to Power’s.

C/C++11 For the first time, the 2011 revision of the standard C and C++ programming
language specifications [44, 45] specifies library constructs for thread creation, thread synchro-
nization using mutexes, and so-called atomic objects, which allow well-defined concurrent access
by multiple threads to the same memory location. It also includes a memory consistency model
that specifies the behavior of memory as observed by multithreaded programs. An important
rule is that conflicting concurrent accesses to the same non-atomic object (called data races
by the standard) have undefined behavior. However, conflicting concurrent accesses of atomic
objects have well-defined behavior, and atomic operations are provided with various levels of
memory ordering and corresponding performance impact, ranging from variants that guarantee
SC to variants called relaxed, that provide very weak guarantees and are intended to be im-
plementable with minimal performance overhead. Other variants include release, acquire, and
consume.

Passing an object between threads can be implemented using a release-acquire pair, where
the write that publishes the object is an atomic write with release ordering and the read that
notices the publication is an atomic read with acquire ordering. This guarantees that the code
that inspects the object on the receiver side sees the initialization performed at the sender side.
A slightly better-performing variant of this is the release-consume pair, where the read that
notices the publication is an atomic read with consume ordering, and a dependency exists in the
program between this read and the reads that inspect the object.

For relaxed atomics, roughly the only guarantees offered by the standard are 1) the absence
of out-of-thin-air writes; more specifically, each write writes a value obtained by a sequence of
program evaluations (possibly out of program order) from the relevant variables’ initial values;
and 2) coherence, meaning that for any particular atomic object, there is a total order on the
writes to that object, consistent with the happens-before order, such that all threads see the
writes to that object in that order. However, causal loops are allowed: in the program where
each thread sets its flag if it sees the other thread’s flag, it is allowed for both threads to see
each other’s flag.

Table 7 details the particular tasks pertaining to case studies described below.

8 Compilers and Runtime Systems

Since WP4 concerns reasoning about heterogeneous systems, we looked at compilers and runtime
systems. Production-quality compilers are typically huge projects, often ranging in the hundreds
of thousands to several millions of lines. Given the multitude of programming languages and
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Case study WP2 WP3

x86-TSO T2.3 T3.1

SPARC-TSO T2.3 T3.1

POWER ISA T2.3 T3.1

C/C++11 T2.3 T3.1

Table 6: Case Studies: Weak memory models

hardware platforms, there is a plethora of compilers, though it is common for compilers to
support multiple source languages and target architectures.

Regarding compilers, we decided to focus on C/C++ compilers because it is the language
of choice when it comes to systems code. Although there have been proposals for type-safe
languages for low-level systems programming, such as Cyclone [46], these have not been adopted
widely. Moreover, these low-level type-safe languages are typically variants of C with a better
type system, which after type-checking is typically ignored during compilation. For instance,
the Cyclone compiler simply generates C code which is very similar to the Cyclone input modulo
the type annotations. Therefore, even for such languages, looking at the compilation of C/C++
largely suffices.

Among the C/C++ compilers, we have singled out two compilers for further study, Com-
pCert [49] and LLVM [47], because they are representative of two different kinds of compilers
that we are interested in. On the one hand, CompCert is a verified compiler written in a mixture
of Coq and OCaml, and is the only sizable verified compiler that exists. We found out, however,
that the verification of CompCert has some limitations, which we will try to address in Tasks 4.1
and 4.3. On the other hand, LLVM is a production-quality open-source compiler that is widely
deployed and used. In comparison to GCC [2], the other widely deployed open-source compiler,
LLVM has a much clearer design, partly because it was originally designed by researchers at the
University of Illinois.

We also looked at managed languages and their runtimes because of their relevance for tasks
4.2 and 4.4. The most widely used runtime systems are the Java Virtual Machine (JVM) and
Microsoft’s .NET platform. Both of these platforms support multiple languages: JVM mostly
by accident, and .NET by design.

8.1 CompCert

In more detail, CompCert is a verified compiler from a sequential subset of the C language,
CompCert C, to PowerPC, ARM, and x86 assembly language. Currently in version 2.0, it is
written in a combination of Coq and OCaml (about 100,000 lines of Coq code, of which 40,000
lines of compiler code and statements of lemmas, 40,000 lines dedicated to the proofs of those
lemmas, and another 20,000 blank lines or with documentation comments, as well as 30,000
lines of OCaml), and consists of 17 passes that gradually transform C programs into assembly
code, and perform standard optimizations: register coloring, constant propagation, common
subexpression elimination, function inlining, branch tunneling, and tailcall optimizations. The
soundness proof of CompCert covers only sequential executions, though a forked-off project,
CompCertTSO, developed a variant of the compiler (and of its soundness proof) that is sound
under a concurrent semantics. Besides being the only sizable verified compiler, we chose it as a
reference point because both its source code and the proof of its correctness are freely available
and may be used for academic purposes. Moreover, our consortium has some local expertise on
CompCert, as one of its members (Vafeiadis) took part in the CompCertTSO project and thus
knows the code base fairly well.

The CompCert verified compiler makes use of a number of important techniques. First,
it is structured as a sequence of many theoretically independent phases: while some phases,
such as the intermediate type checking passes or the Renumber pass, are there only so as to
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improve the effect of the optimizations performed in later passes, in terms of verification, they
are independent. Second, for several of the complicated passes, CompCert relies on translation
validation. For example, the register allocation algorithm is not verified, but its outcome is
checked for correctness by a verified checker. Third, the proofs of all the compilation passes rely
heavily on the semantics of each language being internally deterministic. This allows one to use
“downward” or “forward” simulations—that is, in the same direction as the translation—rather
than “upward”/“‘backward” simulations.

One important limitation of CompCert is the very statement of correctness that has been
proved. The correctness statement of CompCert says that given a complete program, if that is
compiled by CompCert, then executing the generated assembly code according to the assembly
semantics should only produce results that can be generated by executing the source program
according to the CompCert C semantics. Clearly, this statement does not tell us anything
about the typical usage of a compiler, which is to compile the various source files representing
the various modules separately and then to link the resulting object files together. Moreover, it
does not tell us anything about programs that are statically or dynamically linked to a library
that might have been compiled by a different compiler, or that was perhaps even directly written
in an assembly to start with. Therefore, in Task 4.1 we plan to develop a simple verified compiler
that is compositionally correct.

8.2 LLVM

LLVM [47] is a compiler framework initially developed by researchers at Illinois, and is a widely
deployed C compiler. The compiler itself is open source and distributed under a BSD-style
license.

LLVM defines a low-level intermediate representation of programs (the LLVM IR), which is
essentially three-address code. One particularly interesting aspect of this intermediate represen-
tation, which is relevant to Tasks 3.1 and 4.3, is its memory model. LLVM defines a memory
model which is supposed to be a union of the Java and C11 memory models. It supports
the following atomic access modes: unordered, monotonic, acquire, release, acq rel, and
seq cst. In this list, unordered is supposed to correspond to Java’s non-volative writes (which
can read any value not happening after it); monotonic is supposed to correspond to the C11
atomic relaxed accesses (which in addition provides a per-location coherence guarantee); and
the stronger atomicity types map exactly to the corresponding C11 notions. It is worth pointing
out that LLVM does not have anything corresponding to the C11 consume atomics; these would
therefore have to be compiled as though they were acquire atomics, thereby unnecessarily intro-
ducing a memory barrier. The core research challenge raised by the LLVM’s memory model is
to determine which of the standard sequential compiler optimizations are sound and which are
not under the LLVM model.

8.3 JVM and JNI

The JVM (in particular, Oracle’s reference implementation) and is the platform for executing
Java programs and contains a Java byte code interpreter, a just-in-time compiler, a garbage
collector, and the native method interface that allows interoperation between Java and C/C++.
The JVM itself is written in a combination of C++ and assembly code.

JVM is an example of a program that relies on the memory model of the platform it runs
on in interesting ways. In particular, an interesting aspect of the JVM with respect to weak
memory is the way it deals with data races in the input Java program. To maximize perfor-
mance, it must interpret or JIT-compile memory accesses in the input program using the least
expensive possible memory accesses of the target platform. On the other hand, the JVM must
protect its own integrity; in particular, it must ensure that, when interpreting or JIT-compiling a
dereference of a Java object reference, the corresponding pointer points to a properly initialized
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representation of a Java object. These two goals may conflict with each other: consider a Java
program where one thread creates an object and writes a reference to that object into some
static field, and another thread races to read this static field and use the object, e.g. by execut-
ing System.out.println(x.getClass().getName());. The interpretation or JIT-compilation
of Java object creations and field accesses must be such that the accesses of the object by the
second thread do not see an incompletely initialized state of the object. Existing approaches for
reasoning about weak memory models do not support reasoning about patterns such as the one
appearing in the Oracle JVM sketched above. Therefore, the Oracle JVM serves as a useful case
study for the research on reasoning about weak memory models to be conducted in this project.

The Java native method interface (JNI) is rather complex platform-agnostic specification of
how Java and C/C++ can interoperate. It allows methods of Java classes to be implemented
in C/C++ and provides various ways to access Java data structures and call Java methods
from C/C++. JNI itself is an improvement over a number of earlier interfaces (JDK 1.0 native
method interface, Netscape’s Java Runtime Interface, Microsoft’s Raw Native Interface, and
the Java/COM interface) that aims to achieve not only efficiency but also binary compatibility
across JVM implementations.

An important reason why JNI is complicated is because it has to ensure that the C code
respects any implicit assumptions made by the JVM implementation. For example, to call a
Java method from C, one must first compute a “method identifier” for the method to be called.
This is achieved by querying the JVM environment giving as arguments the name of a method
as a string and an appropriate textual representation of the argument types. (The latter are
required to resolve method overloading.) Next, given the method id, the method may be called.
Naturally, if the C code wants to call the same method multiple times, it can remember its
method identifier, and avoid recomputing it at each step. For this, however, to work correctly,
the C code must ensure that there is a live reference to an object of the class defining the
method visible to the JVM because otherwise the JVM may decide to unload the class, and so
the method identifier will no longer be valid.

8.4 .NET

As Microsoft’s .NET framework is very similar to JVM, we will focus on one crucial thing that is
better supported in .NET than in JVM—that is, multiple languages. While multiple languages
have been compiled to the Java bytecode and run on the JVM, the JVM’s ability to handle
multiple languages is largely accidental, whereas .NET was specifically designed to support mul-
tiple managed languages. There are over twenty programming languages that compile directly
to .NET including Microsoft’s C# (an object-oriented language similar to Java), Visual Basic,
and F# (a higher-order functional programming language).

The main way of achieving this is via the Common Language Runtime (CLR) and its Com-
mon Intermediate Language (CIL). The latter is analogous to Java bytecode but supports an
advanced type system that is common to all the languages that map onto CIL. One can think
of this common type system as a union of the type systems of the various languages mapping
onto CIL, though in practice the type systems of several of those languages have evolved to
match closely the common type system, as this simplifies inter-language calling conventions.
The specifics of the type system are not all that important for our purpose, but the important
take-home message for Task 4.4 is that the state of the art in supporting interoperability between
multiple managed languages is for them to have a common underlying type system.

Table 8.4 details the particular tasks pertaining to case studies described below.
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